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Abstra
tWe propose a new de
larative semanti
s for logi
 programs with nega-tion. Its formulation is quite simple; at the same time, it is more gen-eral than the iterated �xed point semanti
s for strati�ed programs,and is appli
able to some useful programs that are not strati�ed.
1. Introdu
tion
This paper belongs to the dire
tion of resear
h whi
h attempts to de-�ne the de
larative meaning of logi
 programs by means of \
anoni
almodels". The programs under 
onsideration are sets of rules of theform A L1; : : : ; Lm (1)where A is an atom, and L1; : : : ; Lm are literals (i.e., atoms or negatedatoms), m � 0. Rule (1) is a notational variant of the formula(L1 ^ : : : ^ Lm) � A;so that any program 
an be viewed as a set of �rst-order formulas.A

ordingly, we 
an talk about models of a logi
 program. Everyprogram has many di�erent models. For instan
e, a model of theprogram p(1);q(2);q(x) p(x) (2)
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onsists of (i) a nonempty set | the universe of the model, (ii) twoelements of the universe | the interpretations of the 
onstants 1 and2, and (iii) two subsets of the universe | the interpretations (extents)of the predi
ates p and q. The only restri
tion on the 
hoi
e of theinterpretations is that it should make all rules of the program true:The obje
t representing 1 must belong to the extent of p, the obje
trepresenting 2 must belong to the extent of q, and the extent of pmust be a subset of the extent of q.The idea of the 
anoni
al model approa
h is that a de
larative se-manti
s for a 
lass of logi
 programs 
an be de�ned by sele
ting, forea
h program � in this 
lass, one of its models as the \
anoni
al"model CM(�). This model determines whi
h answer to a given queryis 
onsidered 
orre
t. For instan
e, a query without variables shouldbe answered yes if it is true in CM(�), and no otherwise.The 
anoni
al model is usually sele
ted among the Herbrandmodels of�, i.e., among the models whose universe is the set of ground termsof the language of �, and whose obje
t and fun
tion 
onstants areinterpreted in su
h a way that every ground term denotes itself. AnHerbrand model is 
ompletely determined by the ground atoms thatare true in it, and it 
an be identi�ed with the set of these atoms. Forinstan
e, (2) has two Herbrand models:fp(1); q(1); q(2)g (3)and fp(1); p(2); q(1); q(2)g: (4)A reasonable semanti
s would designate the �rst of them as 
anoni
al.An Herbrand model M of � is minimal, if no proper subset of M isan Herbrand model of �. For instan
e, (3) is a minimal model of (2),and (4) is not. A program that does not 
ontain negation, su
h as (2),has exa
tly one minimal Herbrand model, and the usual semanti
s fornegation-free programs [4℄ sele
ts that model as its 
anoni
al modelCM(�). Programs with negation may have several minimal Herbrandmodels. There has been mu
h re
ent work on de�ning 
anoni
al mod-els for programs with negation. An important 
lass of \strati�ed" pro-grams was introdu
ed, and 
anoni
al models were de�ned for strat-i�ed programs using an \iterated �xed point" 
onstru
tion [2℄, [1℄,[14℄. Further generalizations were proposed in [12℄ (\perfe
t models")
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and in [15℄ (\well-founded models"). Ea
h of these de�nitions im-poses some restri
tions on the use of negation; resear
hers seem toagree that there 
an be no useful de�nition of 
anoni
al models forarbitrary programs (see Remark 4 below).This theoreti
al work is 
losely related to some pra
ti
al issues in thedesign of logi
al query languages for databases. The uses of negationthat are disallowed by the a

epted de
larative semanti
s must bere
ognized as \semanti
 errors" in queries. For example, the NAIL!system [11℄ prohibits all nonstrati�ed programs.There is also a 
lose 
onne
tion between this work and some of the ex-isting approa
hes to the theory of nonmonotoni
 reasoning, in
luding
ir
ums
ription [9℄ and autoepistemi
 logi
 [10℄. In parti
ular, the it-erated �xed pont semanti
s for strati�ed programs 
an be equivalentlyformulated in terms of these two 
on
epts [7℄, [5℄.The de�nition proposed in [5℄ is parti
ularly simple. It uses the trans-formation of rules (1) into formulas of autoepistemi
 logi
 whi
h in-serts the \belief" operator L after ea
h negation, so that ea
h nega-tive literal :B in the body of (1) be
omes :LB. This mapping 
anbe thought of as a representation of \negation as failure" in the sym-bolism of autoepistemi
 logi
: :B in the body of a rule expressesthat the program gives no grounds for believing in B. The 
anoni
almodel assigned to a strati�ed program � by the iterated �xed pointsemanti
s 
an be easily des
ribed in terms of the autoepistemi
 theoryobtained from � by applying this transformation to ea
h of its rules.In this paper we dis
uss another implementation of the same idea,whi
h does not use autoepistemi
 logi
 and is, in this sense, evensimpler than the approa
h of [5℄. The de�nition of the new semanti
sis given in Se
tion 2. Then we 
onsider a few examples; we will seethat our semanti
s is appli
able to some useful programs that arenot strati�ed (Se
tion 3). Familiarity with autoepistemi
 logi
 is notrequired for understanding these parts of the paper. In Se
tion 4, westudy the relation between the new semanti
s and some of the other
anoni
al model approa
hes.2. Stable ModelsLet � be a logi
 program, i.e., a set of rules of form (1). We assumethat ea
h rule 
ontaining variables is repla
ed by all its ground in-stan
es, so that all atoms in � are ground. (Sin
e � is not required
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to be �nite, the variables 
an be eliminated in this way even when theprogram uses fun
tion symbols, and its Herbrand universe is in�nite.)For any set M of atoms from �, let �M be the program obtainedfrom � by deleting(i) ea
h rule that has a negative literal :B in its body with B 2M ,and(ii) all negative literals in the bodies of the remaining rules.Clearly, �M is negation-free, so that �M has a unique minimal Her-brand model. If this model 
oin
ides with M , then we say that M isa stable set of �. Su
h sets 
an be also des
ribed as the �xed pointsof the operator S� de�ned by the 
ondition: for any set M of atomsfrom �, S�(M) is the minimal Herbrand model of �M .
Theorem 1. Any stable set of � is a minimal Herbrand model of �.
In view of this fa
t, stable sets 
an be also 
alled stable models. Theproof of Theorem 1 is given at the end of this se
tion.The intuitive meaning of stable sets 
an be des
ribed in the same wayas the intuition behind \stable expansions" in autoepistemi
 logi
:they are \possible sets of beliefs that a rational agent might hold"[10℄ given � as his premises. If M is the set of ground atoms thatI 
onsider true, then any rule that has a subgoal :B with B 2 Mis, from my point of view, useless; furthermore, any subgoal :B withB 62 M is, from my point of view, trivial. Then I 
an simplify thepremises � and repla
e them by �M . IfM happens to be pre
isely theset of atoms that logi
ally follow from the simpli�ed set of premises�M , then I am \rational".The stable model semanti
s is de�ned for a logi
 program �, if �has exa
tly one stable model, and it de
lares that model to be the
anoni
al model of �.Proof of Theorem 1. Consider a stable set M . First we want toshow that M is a model of �. Let R be a rule from �. If the bodyof R 
ontains a literal :B su
h that B 2 M , then R is true in M .If not, 
onsider the rule R0 obtained from R by deleting all negative
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literals from its body. Sin
e R0 is one of the rules of �M , andM is theminimal model of �M , it is 
lear that R0 is true in M . On the otherhand, R logi
ally follows from R0; 
onsequently, R is true in M . Toshow that M is minimal, assume that a subset M1 of M is a model of�. We will show thatM1 is also a model of �M . Consider any rule R0of �M ; it is obtained from some rule R of � by deleting all negativeliterals from its body, and, in every su
h literal :B, B 62M . To showthat R0 is true in M1, observe that R is true in M1 (be
ause M1 is amodel of �), that every negative literal :B in the body of R is truein M1 (be
ause B 62 M and M1 � M), and that R0 
an be obtainedby resolving R against these literals. Sin
e M is the minimal modelof �M , M1 =M .3. ExamplesIf � is negation-free, then, for every M , �M 
oin
ides with �, andS�(M) is the minimal Herbrand model of �. Consequently, this modelis the only �xed point of S�. We see that the minimal Herbrand modelof a negation-free program is its only stable model.Consider the program p(1; 2);q(x) p(x; y);:q(y): (5)
Let � be (5) with the se
ond rule repla
ed by its ground instan
es:q(1) p(1; 1);:q(1);q(1) p(1; 2);:q(2);q(2) p(2; 1);:q(1);q(2) p(2; 2);:q(2):Let M = fq(2)g. Then �M isp(1; 2);q(1) p(1; 1);q(2) p(2; 1):The minimal Herbrand model of this program is fp(1; 2)g. It is di�er-ent fromM , so that M is not stable. (This 
ould have been predi
ted
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on the basis of Theorem 1, be
ause M is not a model of �.) Now letus try M = fp(1; 2); q(1)g. In this 
ase �M isp(1; 2);q(1) p(1; 2);q(2) p(2; 2):The minimal Herbrand model of this program is fp(1; 2); q(1)g, i.e.,M . Hen
e fp(1; 2); q(1)g is stable. Are there any other stable modelsamong the 26 possible sets of ground atoms? First of all, it is 
learthat every value of S� in
ludes p(1; 2) but does not in
lude any ofthe atoms p(1; 1), p(2; 1), p(2; 2). Consequently, every �xed point ofS� has the same properties. Besides the �xed point we have found,there are 3 other sets satisfying this 
ondition. The examination ofea
h of them shows that it is not a �xed point of S�. So � has onlyone stable model.Remark 1. Program (5) is not strati�ed, so that the iterated �xedpoint semanti
s 
annot be applied to it. The perfe
t model semanti
s[12℄ is not appli
able to it either. The method of [15℄ sele
ts the same
anoni
al model as our approa
h.Remark 2. The query evaluation pro
edure of PROLOG handlesprogram (5) 
orre
tly relative to the stable model semanti
s: Forevery query without variables, it produ
es the answer yes if the querybelongs to the stable model of (5), and no otherwise.Remark 3. Some programs similar to (5) 
an play two-person games[3℄, [15℄. A position x is winning for White if there is a legal movefrom x to a position y that is not winning for Bla
k. If legal movesare the same for both players, then this prin
iple is expressed by these
ond rule of (5).Here is another nonstrati�ed program with a unique stable model:p q;:r;q  r;:p;r  p;:q: (6)
The only minimal Herbrand model of (6) is ;, and it is obviouslystable. This example illustrates the following general fa
t: If the
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body of ea
h rule of a program � 
ontains a positive literal, then ;is the only stable model of �. To prove this, noti
e that, for su
h �,the bodies of all rules in any �M are nonempty, and 
onsequently theminimal Herbrand model of any �M is ;.There are two kinds of programs to whi
h the stable model semanti
sis not appli
able: the programs that have no stable models, and theprograms that have several stable models. The program 
onsistingof just one rule p  :p has no stable models. (For this program,S�(;) = fpg and S�(fpg) = ;.) The program 
onsisting of two rules,p  :q and q  :p, has two stable models: fpg and fqg. Similarly,the program obtained from (5) by adding the rule p(2; 1) has twostable models: fp(1; 2); p(2; 1); q(1)gand fp(1; 2); p(2; 1); q(2)g:
Remark 4. The symmetry of ea
h of the last two examples suggeststhat it is hardly possible to sele
t a single 
anoni
al model for any ofthem in a reasonable way.Remark 5. The interpretation of the se
ond rule of (5) given inRemark 3 above impli
itly assumes that the graph p of the gameis loop-free. The fa
t that adding p(2; 1) to (5) makes the programmeaningless re
e
ts this limitation.4. Relation to Other Approa
hesThe relation between the stable model semanti
s and the well-foundedsemanti
s is investigated in [15℄, and the former is found to be moregeneral:
Theorem 2 ([15℄, Corollary 6.2). If � has a well-founded model,then that model is its unique stable model.
Moreover, Examples 6.1 and 6.2 from [15℄ show that the stable modelsemanti
s is stri
tly more general that the well-founded semanti
s.Sin
e the well-founded semanti
s 
oin
ides with the perfe
t modelsemanti
s on lo
ally strati�ed programs ([15℄, Theorem 6.3), we 
on-
lude:
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Corollary 1. If � is lo
ally strati�ed, then it has a unique stablemodel, whi
h is identi
al to its perfe
t model.
As to the programs that are not lo
ally strati�ed, we 
an only say thatthe areas of appli
ability of our de�nition and of the perfe
t modelsemanti
s partially overlap [13℄. We have seen that the latter is notappli
able to program (5) whi
h has a unique stable model (Remark1). On the other hand, the only Herbrand model of p :p is perfe
t,but not stable.Sin
e the perfe
t model semanti
s, restri
ted to strati�ed programs,
oin
ides with the iterated �xed point semanti
s [12℄, we also 
on-
lude:
Corollary 2. If � is strati�ed, then its unique stable model is iden-ti
al to its iterated �xed point model.
Finally, we will relate stable models to the translation of logi
 pro-grams into autoepistemi
 theories de�ned in [5℄.Re
all that the language of autoepistemi
 logi
 [10℄ 
ontains the sym-bols of propositional logi
 and the modal operator L. The formulasnot 
ontaining L are 
alled obje
tive. Let A be a set of formulas. Aset of formulas E is a stable expansion of A ifE = th(A [ fLF : F 2 Eg [ f:LF : F 62 Eg):Here F ranges over arbitrary formulas, and th(X) denotes the set ofpropositional 
onsequen
es of X. If all formulas in A are obje
tive,then (i) A has exa
tly one stable expansion E, and (ii) an obje
tiveformula belongs to E i� it follows from A in propositional logi
 ([8℄,[6℄).For any logi
 program � (without variables), I(�) stands for the set offormulas of autoepistemi
 logi
 obtained from � by inserting L afterevery negation [5℄. By At we denote the set of atoms o

urring in �.
Theorem 3. If a logi
 program � has a unique stable modelM , thenI(�) has a unique stable expansion E, and M = E \ At.
The following simple proof of Theorem 3 belongs to Halina Przy-musinska.



www.manaraa.com

Lemma. E is a stable expansion of I(�) i� E is a stable expansionof �E\At.
Proof. It is suÆ
ient to show thatI(�) [ fLF : F 2 Eg [ f:LF : F 62 Egis equivalent to�E\At [ fLF : F 2 Eg [ f:LF : F 62 Eg:The set fLF : F 2 Eg [ f:LF : F 62 Eg 
ontains LF for ea
hF 2 E \ At and :LF for ea
h atom F 62 E \ At. In the presen
e ofthese literals, I(�) is equivalent to �E\At.Proof of Theorem 3. Let M be the only stable model of �. Sin
e�M is a set of obje
tive formulas, it has exa
tly one stable expansionE, and E \At = th(�M ) \At = S�(M) =M:Hen
e E is a stable expansion of �E\At. By the lemma, it followsthat E is a stable expansion of I(�). It remains to show that I(�)has no other stable expansions. Let E0 be a stable expansion of I(�).By the lemma, E0 is a stable expansion of �E0\At. Sin
e the latter isa set of obje
tive formulas, an obje
tive formula belongs to E0 i� it isa propositional 
onsequen
e of �E0\At. Consequently,E0 \At = th(�E0\At) \At = S�(E0 \At);so that E0 \At is a stable model of �. Sin
e the only stable model of� is M , it follows that E0 \At =M . Hen
e �E0\At = �M , and E0 isa stable expansion of �M . Consequently E0 = E.A
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